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Summary

The feasibility of simulating and synthesizing substructures by computational neural network

models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane

stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training

neural networks to simulate the cantilever responses to different loads, the original beam problem can

be solved as a match-up between two subsystems under compatible interface conditions. The genetic

algorithms are succesfully used to solve the match-up problem. Simulated results are found in good
agreement with the analytical or FEM solutions.

Introduction

Many aerospace structures are composed of substructures that are geometrically simpler and

whose responses to loads are relatively easier to calculate. While a typical load-response relationship of

the substructure can be established by utlizing neural network (NN) models trained from finite element

analysis data, how to incorprate the NN models to get the characteristics of the whole system is a

problem to be solved. We investigate the feasibility of synthesizing computational neural network models

of aerospace substructures by studying some simple problems. For statically determinate structures in

linear deformation, superposition can be applied and synthesizing of the NN models for the substructures
is straightforward.

The statically indeterminate structures, on the other hand, must be split into statically determi-

nate substructures first. When neural networks representing the substructures are trained, compatibility

conditions needs to be enforced to obtain the unknown interface loads. But how to solve this match-up

problem is not obvious. In this paper a global search technique, i.e. the genetic algorithms (CA), is

used to treat the match-up problem as an optimization process of minimizing the differences between
the interface quantities.

Since the major part of solving the statically determinate structures, i.e. specifying and trainning

NNs, is also addressed in the statically indeterminate problems, only the latter will be addressed here.

A 1-D Beam and Its Analytical Solutions

The statically indeterminate beam problem shown in Fig. 1 (a) has the following exact analytical

solutions, if the beam is uniform with a bending rigidity of EI. The interface moment and force at pointB:
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Fig. 1 A Statically Indeterminate Beam and its Decomposition
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Simulation of the 1-D Beam by NN and GA

Artificial Neural Networks (ANN), or simply Neural Networks (NN) are computational systems

inspired by the biological brain in their structure, data processing and restoring method, and learning

ability. The many desirable qualities of NN, such as a universal approximator, have enabled it being
widely applied in engineering. For details of NN one can consult [1].

To simulate the structure shown in Fig. l(a) by Neural Networks, the statically indeterminate

beam can be split into two substructures as shown in Fig. l(b). These substructures (cantilevers here)

are statically determinate provided the interface forces at point B (bending moment and shear force
F)are known.
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Fig. 2 Cantilever Beam to be Simulated by a NN



' itle two suostructuresin elg. i(D) can De represented oy one single neural network simulating
the cantilever beam with free-end moment and force, see Fig. 2. The network has three input variables
and two output variables:

{M,F,a} _ NN =:_ {w,O} (3)

The neural network will be trained by using training data generated from the analytical solutions

ia - ga

- _a

where all the quantities have been nondimesionalized:

EIwB EIOB _ M F

PLa PL 2 ' PL ' = -L"

The neural network used was a MLP (multi-layer perceptron, also called feed-forward NN) with

1 hidden layer and 10 hidden layer neuros. There are 180 of training data sets, a combination of 6 x 6 x 5
variations in M, F and ff respectively.

Training is a critical part of a NN simulation, taking significant time and energy. But it seems

that the most important thing would be to choose a proper training algorithm. A good algorithm

can train a network in minutes, compared to hours of computation with a poor turnout when an
inappropriate algorithm is used.

For the present problem, it is found that the MATLAB program for training feed-forward NN

with Levenberg-Marquardt, trainlrn, gives the best results. Other programs, such as trainbpa (train-

ing feed-forward network with back-propagation plus adaptive learning), could not give good enough
performances when the number of input variables is 3 or more.

When the NN representing the substructures has been trained, the interface moment .M and

force F at point B can be obtained by enforcing the following compatibility and equilibrium conditions

Ml = Ma; OB1 = --OB2; F1 = -F2; wB1 = wB2.

where the sub-index 1 and 2 indicate substructure 1 and 2 respectively.
First the following approach was tried:

{M,F} ----+ {M,F,a} _ NN1 :::::=v{w,O}

{w,O,a} _ NN2 _ {M,F}

where NN1 is the neural network of the same scheme as in Eqn. (3), while NN2, having inputs of

{w, 0, a} and outputs of {M, F}, is the reverse network to NN1. This approach did not work since the

pair of values {M, F} would not converge. It was seen that even those iterations which started with an
initial {M, F} same as the exact soloutions of Eqn. (4) and its reverse form

Y = 12_-_s + 60-_s- 3K2 + 2ff3 (.5)

did not converge mainly because Eqn. (5) magnifies the error between the iterations enormously.

To solve the match-up problem in another way the following optimization process can be formu-
lated

where
MinM,FE(M, F)

1

(6)

(r)



, this optimization prot)lem can oe SOlVea t)y using genetic algorithms (_A), the c_erlvat_ve-rree

stochastic methods based on the concepts of natural selection and evolutionary processes. The GAs were

first proposed by Holland in 1975 ([2]), and have been widely used as a general-purpose optimizationtool.

Major components of CA are composed of encoding scheme, fitness evaluation, fitness sharin.q,

elitism, selection, crossover and mutation. Details of CA can be found in I2J. Specifications of the GA
used in the present study are described as follows:

(a) The values of M and T are transformed into a 22-bit binary string with one ll-bit part

related to M and the other ll-bit part dedictated to F. One bit of the string is called a chromosome

or a gene. In each of the ll-bit string the left-most bit represents the sign, with 0 representing +, and

1 representing -. The remaining 10-bit string represents the magnitude times 10 -4 So the smallest
non-zero values recognizable in this GA is +0.0001.

(b) The whole population consists of np members, each of which is represented by a 22-bit binary
string as defined in (a). For the present study, np=lO.

(c) The fitness represents the degree of merit of a member in the population. A member with a

higher fitness has a larger chance of being chosen as a parent for the next generation. It can be definedas: fi = 1
E(M,,F,), where E is defined in Eqn. (7).

(d) The new generation keeps a few members of the old generation which have the best fitness

values. For the present study the number of this part of members is: ne _- 0.3np.
(e) The other members of the new generation are produced by one or two parents from the old

generation. The probability of a member in the old generation to be chosen as a parent is fitness-related:
Pi = _p--@7.

Ek=,/k

(f) The new member can be produced by crossover of two chosen parents at a probabilityof

Pcross.The crossover isa process where portions of the parents' chromosome stringsare exchanged.

In the present study one-point and two-point crossoversare used, in which the chromosome stringare

divided intotwo and three portionsrespectively.The divisionof portions isbased on a random process.

(g) If there is no crossover,the new member would inheritallthe chromosomes of a chosen

parent. But allitschromosomes and the resultsfrom (f)should undergo a mutation (i.e.0 becomes 1
or I becomes 0) in a given probabilityofP,nut_.

(h) The criterion of terminating GA is when MiniE(Mi, F,) < e. Otherwise, when the number

of generations is too large, or nge,_ _> A, the GA search has to be stopped.

The values of probabilities Pc_o,s and Pmut_ have profound effects on the performance of the CA.

In the first case, they are specified as: Pcros, = 0.5;pm,,ta = ,1; e = 0.0015; A = 2000. This formulation

works quite well but has a probability of 10-v30% of not meeting the terminating criterion, therefore

some of the results would not be good enough. In these cases, another formulation with Pc_o,s and Pm,,t,_
as functions of ngen were used and improvements were seen.

A 2-D Beam and Its Solution

The above method of simulating and synthesizing substructures were used to solve a 2-D problem.

As shown in Fig.3, a 2-D beam clamped at both ends has a parabolically distributed load P, and the
stresses and deformation at plane A-A are to be evaluated.

The shear and normal stress at A-A were assumed to have the following distribution

where _ =
h"

r,y = a2(1 - 92), a, = b0 + b,_ + b2_. 2 (s)
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Fig. 3 A 2-D Beam under Parabolic Load

Imagine that the beam is split at A-A and become two cantilevers with a shear and normal load.

Neural networks can be trained by taking FEM solutions of the node displacements as the targets and
combinations of a2,bo,bl and b2 as the inputs:

{a2, b0} ==_ NN1 _ {ui, v, at A-A, left cantilever},

{bl, b2} ==_ NN2 ==_ {ui, vi at A-A, left cantilever},

{a2, b0} _ NN3 _ {u,, vi at A-A, right cantilever},

{bl, b2} _ NN4 _ {u,, vi at A-A, right cantilever}.

Then the interface stresses and deformation can be obtained by solving

Mina2,bo,b,,b2 E(a2, bo, bl, h2) (9)
where

E(a , b0,b,, ~ _ u c)2 + _ v  )2]½ (10)
i

in which LC and RC indicates the left cantilever and right cantilever respectively. The GA used was

similar to that for the 1-D problem. A major difference is that since now we have four unkowns, each

of them was allocated only a 6-bit string compared with a 11-bit string in the 1-D problem. As will be
shown in the next section, satisfactory results can still be obtained.

Some Results

For the 1-D problem the following cases were used: _ = 0.8; _ -- 0.8; _ = 0.8; _ = 0.5 -,_ 1.5.
Results are shown in Fig. 4, in which part (a) is the search history of the GA for the first point

(L2/Lz = 1.5), (b) is the distribution of the population on the search plane when GA is terminated,

(c) is the comparison of simulaions and the exact solutions of MI and F1, and (d) is the comparison of

_B, and 8B_. Here the subscrirpt 1 indicates that the nondimensionalization is based on L].
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Fig. 4 Calculation of forces and displacements at point B

For the 2-D problem the simulated stress distributions and deformation at interface A-A com-

pared with FEM results are shown in Figs. 5 and 6. We used a 8-node rectangular element ([3]) to do
the finite element analysis, and the mesh is shown in Fig. 6.

Stress Distributions at A-A
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Fig. 5 Stress Distributions at A-A

Mesh before deformation

- - Mesh after deformation by FEM (exaggerated)

)_ Deformed interface A-A by NN and GA simulation

Fig. 6 Mesh and Deformations

6. Conclusion

The feasibility of simulating substructures by computational neural network models is studied.

Synthesizing the substructures together is proved to be possible by formulating the match-up problem
into an optimization process which can be solved using genetic algorithms.

It was observed that the synthesizing problem cannot be solved by simple iterations using the
direct and reverse NNs representing the substructures.

Although the study was carried out on simple beam structures, it could be readily applied to

more complicated cases. For the use of NN method, as a universal approximator the NN find no

difference on whether the system to be simulated is linear or highly non-linear. Of course if the input

or output variables are large in number it would be harder to find a algorithm to train the NN properly.

If there are more interface parameters between the substructures, it is not known whether the GA can

still work or other optimization techniques should be used. These are problems to be further studied.
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